sim2bids
Release 1.1.2

Dinara Issagaliyeva

Jul 03, 2023

CONTENTS

1 Where to go from here
I.1 Getting Started e e
1.2 Input files and structures
1.3 How to use the app

NN W W

sim2bids, Release 1.1.2

Version: 1.2.1

sim2bids is a Python package to created to convert computational data to BIDS standard as proposed by Michael
Schirner and Petra Ritter.

The specification proposes a data structure schema for neural network computer models that aims to be generically
applicable to all kinds of neural network simulation software, mathematical models, computational models, and data
models, but with a focus on dynamic circuit models of brain activity.

Importantly, they not only propose suggestions for a BIDS schema for computer models, but they also propose exten-
sions to the entire BIDS standard that solve several other problems.

Note: This project is under active development.

CONTENTS 1

https://docs.google.com/document/d/1NT1ERdL41oz3NibIFRyVQ2iR8xH-dKY-lRCB4eyVeRo/edit?usp=sharing
https://docs.google.com/document/d/1NT1ERdL41oz3NibIFRyVQ2iR8xH-dKY-lRCB4eyVeRo/edit?usp=sharing

sim2bids, Release 1.1.2

2 CONTENTS

CHAPTER
ONE

WHERE TO GO FROM HERE

1.1 Getting Started

1.1.1 Installation

Get the package

Simply run the following command to get the app up and running:

$ pip install sim2bids

Alternatively, either fork or obtain the latest sim2bids version by running the following:

$ git clone https://github.com/dissagaliyeva/sim2bids
$ cd sim2bids
$ python setup.py install

Then, open up your notebook and import the following packages to set up the notebook:

import sim2bids

import panel as pn

from sim2bids.sim2bids import MainArea
from sim2bids.app import app

pn.extension('tabulator', 'ace', 'jsoneditor', 'ipywidgets', sizing_mode='stretch_width',
< notifications=True)

Provide software-specific information

This app aims to help you and future users reproduce the results of your simulations. Specify the required fields before
running the app to make the process easier. Please pay attention to these fields *only if* input code meets the
following conditions:

* non-Python code (e.g., MATLAB, R, Julia)

e Python code with more than one rhythm-specific parameters (e.g., separate parameters for alpha and delta
rhythms)

» Python code with a list of parameters, e.g., G values from 0.1 to 1.0 with a step of 0.15

MODEL_NAME
Name of the model used in your simulation. Currently accepted models: ReducedWongWang, HindmarshRose,
and Generic2dOscillator. The models follow the same default values as specified in TheVirtualBrain.

sim2bids, Release 1.1.2

* ReducedWongWang

a=270.0, b=108.0, d=0.154, gamma=0.000641, tau_s=100.0, w=0.9, J_N=0.2609, 1_0=0.3,
G=2.0, sigma_noise=1.e-09, tau_rin=100

* HindmarshRose
r=0.001, a=1.0, b=3.0, c=1.0, d=5.0, s=1.0, x_1=-1.6
* Generic2dOscillator
tau=1.25, a=1.05, b=0.2, omega=1.0, upsilon=1.0, gamma=1.0, eta=1.0

Example:

app-MODEL_NAME = 'ReducedWongWang'

MODEL_PARAMS
Model parameters used in the code. If you have a Python file with up to one rhythm, the app supplements
parameters without assistance.

Example code for each cases above:

Example 1: non-Python code
app .MODEL_NAME = 'ReducedWongiiang’
app .MODEL_PARAMS = dict(a=1., b=2., c=3., G=np.arange(0.1, 1., 0.15))

Example 2: Python code with more than one rhythm-specific parameters
app .MODEL_PARAMS = dict(alpha=dict(a=1., b=3.),
delta=dict(a=2., b=1.))

Example 3: Python code with a list of parameters
app .MODEL_PARAMS = dict(G=np.arange(®.1, 1., 0.15))

Here are some templates that you can use right after import statements. The list will keep getting updated as the app
SIOowS.

TheVirtualBrain (TVB) users

set required fields for current TVB version

app.SoftwareVersion = 2.6

app.SoftwareRepository = 'https://github.com/the-virtual-brain/tvb-root/releases/
—tag/2.6"'

app.SoftwareName = 'TVB'

set required fields for older TVB versions, e.g. 1.5.10

app.SoftwareVersion = '1.5.10'
app.SoftwareRepository = 'https://github.com/the-virtual-brain/tvb-root/releases/
—tag/1.5.10"

app.SoftwareName = 'TVB'

Warning: Please specify model parameters if your input code meets one of the following conditions:
* non-Python code (e.g., MATLAB, R, Julia)

* Python code with more than one rhythm-specific parameters (e.g., separate parameters for alpha and delta
rhythms)

4 Chapter 1. Where to go from here

https://docs.thevirtualbrain.org/api/tvb.contrib.scripts.models.html?highlight=reducedwongwang#module-tvb.contrib.scripts.models.reduced_wong_wang_exc_io
https://docs.thevirtualbrain.org/api/tvb.contrib.simulator.models.html?highlight=hindmarshrose#module-tvb.contrib.simulator.models.hindmarsh_rose
https://docs.thevirtualbrain.org/api/tvb.contrib.simulator.models.html?highlight=hindmarshrose#module-tvb.contrib.simulator.models.generic_2d_oscillator

sim2bids, Release 1.1.2

* Python code with a list of parameters (for parameter exploration), e.g., G values from 0.1 to 1.0 with a step
of 0.15

Run the app

There are two ways to run the app:

Run locally

When you run the app locally (=not on a server, cluster, or anything of the sort), the app creates a localhost page
in a new tab that will render the app. The page should have a name like this http://localhost:58838/, of course,
with different numbers. Please note that the numbers will keep changing every time you run the app.

Here is the snippet to run the app:

pn.serve(MainArea() .view())

Note: The app performs best if ran locally. It will open up a new tab running on a local host. It’s a known problem in
the HoloViz community (the package the app built on) that the components do not get rendered well if ran inline.

Run on a server

When you run the app on a server/cluster, you will need to run the app inline. The localhost will be created but
won’t be accessible. That’s why it’s recommended to run it inline.

Please note that this approach might not work properly because of the rendering issues. You might see text
blocked but input fields or not be able to do select folders. If you encounter that, please keep restarting the
notebook until the issue is fixed.

Here is the snippet to run the app:

MainArea() .view().servable()

Note: We recommend saving all your simulations created on a server and running the app locally for best performance.

Complete script

Run locally

import sim2bids

import panel as pn

from sim2bids.sim2bids import MainArea

pn.extension('tabulator', 'ace', 'jsoneditor', 'ipywidgets', sizing_mode='stretch_
—width', notifications=True)

set required fields

sim2bids.app.app.SoftwareVersion = 2.6

sim2bids.app.app.SoftwareRepository = 'https://github.com/the-virtual-brain/tvb-
—root/releases/tag/2.6"'

sim2bids.app.app.SoftwareName = 'TVB'

pn.serve(MainArea() .view())

1.1.

Getting Started 5

sim2bids, Release 1.1.2

Run on a server

import sim2bids

import panel as pn

from sim2bids.sim2bids import MainArea

pn.extension('tabulator', 'ace', 'jsoneditor', 'ipywidgets', sizing_mode='stretch_
—width', notifications=True)

set required fields

sim2bids.app.app.SoftwareVersion = 2.6

sim2bids.app.app.SoftwareRepository = 'https://github.com/the-virtual-brain/tvb-
—root/releases/tag/2.6"'

sim2bids.app.app.SoftwareName = 'TVB'

MainArea() .view().servable()

1.2 Input files and structures

1.2.1 Accepted file extensions

o Text files (.txt)

* Tab-separated files (.tsv)

¢ Generic data files (.dat)

* Numpy array (.npy)

* MATLAB (.mat) files (v4 and v6-7.2 using scipy.io.loadmat, v7.3 using mat73 package)
e HDFS5 (.h5) files

* zip folders containing all above file extensions

1.2.2 Required and recommended fields

Please note the following rules and recommendations:
* The most important file to have for conversions is Structural Connectome which is must be named weights.

¢ Recommended files:

centres (or nodes and labels separately),

distances (or tract_lengths which is the other name for distances, thus this file will be renamed
to distances both in the input and output folders)

Python, MATLAB or R code that can reproduce the results

empirical and simulated time series and time stamps.

e average_orientation or orientation will be renamed to normals according to BEP034 both in the input
and output folders.

6 Chapter 1. Where to go from here

https://docs.google.com/document/d/1NT1ERdL41oz3NibIFRyVQ2iR8xH-dKY-lRCB4eyVeRo/edit?usp=sharing

sim2bids, Release 1.1.2

1.2.3 Accepted files

Here is the list of files that are supported by the app categorized by their respective folders.

Table 1: Coordinates (coord folder)

the coordinates along rows are
mapped to the coordinates along
columns.

File name Description Dimensions Notes
centres consists of nodes (nx1 vector) and | nx4 See description of nodes and
labels (nx3 matrix) in that order. labels below
nodes These are the region labels (e.g., | nx1 recommended
lh_bankssts, lh_superiorfrontal).
delays These are the 3d coordinate cen- | nx3 recommended
tres
times These are the time steps of the | nxl recommended
simulated time series.
bold_times These are the time steps of the | nxl recommended
simulated BOLD time series.
areas This is the estimated vector each | nxl optional
region’s area in mm”?2.
cortical This is the vector that distin- | nxl optional
guishes cortical (1) from subcor-
tical (0) regions.
average orienta- | normals. nx3 optional. If the file name is
tions, normals average_orientation, it will
be named normals in input and
output folders.
hemisphere The vector that distinguishes right | nx1 optional.
(1) from left (0) hemisphere.
faces These are the faces of cortex sur- optional.
face triangulation.
vertices These are the vertices of cortex optional.
surface triangulation.
map This is the nxm matrix where | nxm optional.

1.3 How to use the app

1.3.1 Preprocessing pipeline

1.3.2 App layout & features

Layout

When you run the app locally, you should see the following layout as shown below. There’s going to be a small difference
in the local and inline layouts but the functionality remains the same.

1.3. How to use the app

sim2bids, Release 1.1.2

get_started/.| \protect \T1l\textunderscore static.png

_static.png
Selecting Files
Pears are green.
Oranges

Oranges are orange.

8 Chapter 1. Where to go from here

	Where to go from here
	Getting Started
	Installation
	Get the package
	Provide software-specific information
	Run the app
	Complete script

	Input files and structures
	Accepted file extensions
	Required and recommended fields
	Accepted files

	How to use the app
	Preprocessing pipeline
	App layout & features

